SUSTAINABLE WAY OF IMPROVING GRAIN LEGUMES PRODUCTIVITYAGAINST FAILURE OF INTRODUCED RHIZOBIA INOCULANT

Main Article Content

A. A. Abdullahi
F. J. Abubakar

Abstract

Rhizobia inoculation has been established worldwide as a cheaper, more effective way of ensuring adequate nitrogen supply to legumes than even the application of nitrogen fertilizer. The development of rhizobia inoculant industries in many countries has largely been motivated by the desire to introduce legume species to new areas, where appropriate ones do not exist. Competition from naturally occurring populations of rhizobia is usually a significant factor determining the establishment of introduced rhizobia inoculant strains in the field. Application of commercial inoculants introduced to new environments is usually associated with tendencies of failure, mostly due to the nature of the indigenous strains such as their population large size, positional advantage, higher competitive ability in nodule occupancy, saprophytic survival, ability to stand bacteriophages or epiphytic bacteria and superior adaptation to local and environmental factors, such astemperature, pH and nitrate content. Hence, selective enrichment of legume rhizosphere with environmentally adapted and highly effective indigenous strains of rhizobia may be the only way to improve legume nodulation, N2 fixation and productivity under field conditions. There is need to follow standard procedures for obtaining the appropriate rhizobia for indigenous inoculant development, considering the legume genotype, environmental conditions and management practices to achieve the desired results. This will improve on the low yield of legumes, relative to their potential yields obtained by farmers due to low soil fertility, particularly in savanna zones through their influence on the legume growth, nutrition, and productivity. The review also highlighted how indigenous rhizobia provides an alternative to costly inorganic nitrogen fertilizers and commercial inoculants developed from rhizobia originating from over environments.Indigenous rhizobiacould ensurelegumes productivity and sustainabilitythrough their biological N2 fixation that reduces in the adverse environmental effects of inorganic nitrogen fertilizers such as soil acidification, release of greenhouse gases and contamination of nearby and underground water bodies.Thus, checking climate change, ensuring environmental safety, and supporting the ever-increasing human population through higher productivity of the legumes.

Article Details

How to Cite
Abdullahi, A. A., & Abubakar, F. J. (2022). SUSTAINABLE WAY OF IMPROVING GRAIN LEGUMES PRODUCTIVITYAGAINST FAILURE OF INTRODUCED RHIZOBIA INOCULANT. The Bioscientist Journal, 10(2), 167-180. Retrieved from https://bioscientistjournal.com/index.php/The_Bioscientist/article/view/115
Section
Articles

References

Abdullahi, A. A. and Yusuf A. A. (2017). Higher effectiveness of extant indigenous groundnut (Arachis hypogaea L.-nodulating rhizobia over introduced inoculant strains on an Alfisol. In sustainable soil management and food and nutrition security. Proceedings of the 41st Annual Conference of the Soil Science Society of Nigeria, Abubakar Tafawa Balewa University, Bauchi, Nigeria. 13th-17th March, 2017. pp. 164-172.
Albareda, M., Rodríguez-Navarro, D. N. and Temprano, F. J. (2008). Rhizobium populations in grassland acid soils of southwest Spain which nodulate Trifolium, Medicago, Ornithopus and Biserrula. InC.Porqueddu and M. M. Tavares de Sousa (Eds). Sustainable Mediterranean grasslands and their multifunction.pp.127-130. Zaragoza: CIHEAM/FAO/ENMP/SPPF.
Aserse, A. A., Markos, D., Getachew, G., Yli-Halla, M., and Lindström, K. (2020). Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch. Agron. Soil Sci. 66, 488-501.
Babalola, O. O. and Glick, B. R. (2012). The use of microbial inoculants in African agriculture: Current practice and future. Journal of Food, Agriculture and Environment, 10 (3-4), 540-549.
Bala, A. (2011). Update on inoculant production by cooperating laboratories. Milestone reference number: 3.4.3. N2Africa, October 2011. 8pp.
Bala, A. (2011). Update on inoculant production by cooperating laboratories. Milestone reference number: 3.4.3. N2Africa, October 2011. 8pp.
Bashan, Y., de-Bashan L. E., Prabhu, S. R. and Hernandez, J. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil, 378, 1-33.
Brockwell, J. and Bottomley, P. J. (1995). Recent Advances in inoculant technology and prospects for the future. Soil Biology and Biochemistry, 21(415), 683-697.
Castro, S., Permigiani, M. Vinocur, M. and Fabra, A. (1999). Nodulation in peanut (Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Applied Soil Ecology, 13, 39-44.
Chen, Q., Zhang, X., Terefework, Z., Kaijalainen, S., Li, D. and Lindström, K. (2003). Diversity and compatibility of peanut (Arachis hypogaeaL.) Bradyrhizobium and their host plants. Plant and Soil, 255, 605-617.
Chidua, M. S. (2021). Improving the legume-rhizobium symbiosis in Zimbabwean Agriculture: A study of rhizobia diversity and symbiotic potential focussed on soybean root nodule bacteria. Thesis is presented for the degree of Doctor of Philosophy of Murdoch University Western Australia, 2021.
Crisóstomo, J. A., Rodríguez-Echeverría, S. and Freitas, H. (2013). Co-introduction of exotic rhizobia to the rhizosphere of the invasive legume Acacia saligna, an intercontinental study. Applied Soil Ecology, 64, 118-126.
Cummings, S. P. (2005). The role and future potential of nitrogen fixing bacteria to boost productivity in organic and low-input sustainable farming systems. Environmental Biotechnology,1(1), 1-10.
Date, R. A. (2000). Inoculated legumes in cropping systems of the tropics. Field Crops Research, 65(2-3), 123-136.
Deaker, R., Roughley, R. J. and Kennedy, I. R. (2004). Legume seed inoculation technology- A review. Soil Biology and Biochemistry, 36, 1275-1288.
Elboutahiri, N., Thami-Alami, I., Zaïd, E. and Udupa, S. M. (2009). Genotypic characterization of indigenous SinorhizobiummelilotiandRhizobiumsullaeby rep-PCR, RAPD and ARDRA analyses. African Journal of Biotechnology, 8(6), 979-985.
Giller, K. E., and Cadisch, G. (1995). “Future benefits from biological nitrogen fixation: an ecological approach to agriculture,” in Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Developments in Plant and Soil Sciences, Vol. 65, eds J. K. Ladha, and M. B. Peoples (Dordrecht: Springer), 255-277.
Hamma, I. L. and Ibrahim, U. (2013). Management Practices for Improving Fertility Status of Soils in Nigeria. World Journal of Agricultural Sciences, 9(3), 271-276.
Hartmann, M., Frey, B., Mayer, J., Mäder, P., and Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194. Doi: 10.1038/ismej.2014.210.
Howieson, J. G., Yates R.J., Bala, A. and Hungria, M. (2016). Collecting nodules and isolation of rhizobia. In Working with rhizobia. pp. 25-37. In J. G. Howieson and M. J. Dilworth (Eds.). Australian Centre for International Agricultural Research (ACIAR) Canberra, Australia.
Howieson, J. G., Yates, R. J., Foster, K., Real, D. and Besier, R. B. (2008). Prospects for the future use of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-Fixing leguminous symbioses. Springer, Dordrecht, pp 363-387.
Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I., and Dakora, F. D. (2021). Rhizobia as a source of plant growth-promoting molecules: potential applications and possible operational mechanisms. Front. Sustain. Food Syst. 4:619676.
Khalid, R., Zhang, X. X., Hayat, R. and Ahmed, M. (2020). Molecular Characteristics of Rhizobia Isolated from Arachis hypogaeaGrown under Stress Environment. Sustainability,12, 6259.
Koskey, G., Mburu, S. W., Njeru, E. M., Kimiti, J. M., Ombori, O., and Maingi, J. M. (2017). Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of Eastern Kenya. Front. Plant Sci. 8:443.
Loks, N. A., Manggoel, W., Daar, J. W, Mamzing, D. and Seltim, B. W. (2014). The effects of fertilizer residues in soils and crop performance in northern Nigeria: A review. International Research Journal of Agricultural Science and Soil Science, 4(9), 180-184.
Machido, D. A., Olufajo, O. O., Yakubu, S. E. and Yusufu, S. S. (2011). Enhancing the contribution of the legumes to the N fertility of soils of the semi-arid zone of Nigeria. African Journal of Biotechnology, 10 (10), 1848-1853.
Machido, D. A., Olufajo, O. O., Yakubu, S. E. and Yusufu, S. S. (2011). Enhancing the contribution of the legumes to the N fertility of soils of the semi-arid zone of Nigeria. African Journal of Biotechnology, 10 (10), 1848-1853.
Mathu, S., Herrmann, L., Pypers, P., Matiru, V., Mwirichia, R., and Lesueur, D. (2012). Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp.) and green gram (Vigna radiata L. wilczek.) yields in Kenya. J. Soil Sci. Plant Nutr. 58, 750–763.
Meghvansi, M. K., Prasad, K., and Mahna, S. K. (2010). Symbiotic potential, competitiveness and compatibility of native Bradyrhizobium japonicum isolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India. Saudi J. Biol. Sci. 17, 303-310.
Mekontchou, T., Ngueguim, M. and Pobou, F. (2007). Influence of Bradyrhizobium strains on groundnut advanced breeding lines (Arachis hypogaeaL.) Yield in North Cameroon. Tropicultura, 25(4), 235-239.
Mendoza-Suárez, M., Andersen, S. U., Poole, P. S.and Sánchez-Cañizares, C. (2021). Competition, Nodule Occupancy, andPersistence of Inoculant Strains: KeyFactors in theRhizobium-Legume Symbioses. Frontiers in Plant Science, 12:690567.
Mohammed, A., Dikko, A.U., Audu, M. Mohammed, B. S. and Adeboye, M. K. A. (2016). Evaluation of some nutrients in cowpea vine and litter for soil fertility improvement in Sudan savanna. Nigerian Journal of Agriculture, Food and Environment, 12(4), 91-97.
Mwangi, S. N., Karanja, N. K., Boga, H., Kahindi, J. H. P., Muigai, A., Odee, D., et al. (2011). Genetic diversity and symbiotic efficiency of legume nodulating bacteria from different land use systems in Taita Taveta, Kenya. Trop. Subtrop. Agroecosyst. 13, 109–118.
Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Online. Crop Management. Doi: 10.1094/CM-2004-0301-05-RV.
Nievas, F., Bogino, P. Nocelli, N., Giordano, W. (2012). Genotypic analysis of isolated peanut-nodulatingrhizobial strains reveals differences among populations obtained from soils with different cropping histories. Applied Soil Ecology, 53, 74-82.
Nyaga, J. W. and Njeru, E. M.(2020).Potential of Native Rhizobia toImprove Cowpea Growth andProduction in Semiarid Regions of Kenya. Frontiers Agronomy. Vol. 2 Article 606293.
O’Hara, G., Yates, R. and Howieson, J. (2002). Selection of strains of root nodule bacteria to improve inoculants performance and increase legume productivity in stressful environments. InD.Herridge (Ed.). Inoculants and Nitrogen Fixation of Legumes. ACIAR proceedings 109e. pp 75 -80.
Oldroyd, G. E. D. and Downie, J. A. (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology, 59, 519-546.
Osei, O., Abaidoo, R. C., Ahiabor, B. D., Boddey, R. M., and Rouws, L. F., (2018). Bacteria related to Bradyrhizobiayuanmingensefrom Ghana are effective groundnut micro-symbionts. Appl. Soil Ecol. 127, 41–50.
Ouma, E. W., Asango, A. M., Maingi, J., and Njeru, E. M. (2016). Elucidating the potential of native rhizobial isolates to improve biological nitrogen fixation and growth of common bean and soybean in smallholder farming systems of Kenya. Int. J. Agron2016, 1-7.
Rao, D. L. N. (2014). Recent Advances in biological nitrogen fixation in agricultural systems. Proceedings of the Indian National Science Academy, 80(2), 359-378.
Sajjad, M., Malik, T. A., Arshad, M., Zahir, Z. A., Yusuf, F. and Rahman, S. U. (2008). PCR Studies on Genetic Diversity of Rhizobial Strains. International Journal of Agriculture and Biology, 10(5), 505-510.
Saleena, L., Loganathan, M., Rangarajan, P. and Sudha, N. (2001) Sunita Genetic diversity of Bradyrhizobiumstrains isolated from Groundnut.Canadian Journal of Microbiology, 47(2), 118-112.
Schlaeppi, K., and Bulgarelli, D. (2015). The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217.
Schumpp, O. and Deakin, W. J. (2010). How inefficient rhizobia prolong their existence within nodules. Trends in Plant Science, 15(4), 189-195.
Takács, T., Cseresnyés, I., Kovács, R., Parádi, I., Kelemen, B., Szili-Kovács, T., et al. (2018). Symbiotic effectivity of dual and tripartite associations on soybean (Glycine max L. Merr.) cultivars inoculated with Bradyrhizobium japonicum and AM Fungi. Front. Plant Sci. 9:1631.
Tena, W., Wolde-Meskel, E., and Walley, F. (2016). Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of Southern Ethiopia. Agronomy 6, 1–11. doi: 10.3390/agronomy6010011.
Tiwari, R., Ardley, J., Carr, R., Parkinson, L. and Marfisi, A. V. (2012). Master class in rhizobial technology; ‘Isolation, identification and utilisation of root nodule bacteria (rhizobia) in promoting sustainable agricultural productivity’. 2nd-13th December 2012, Sri Lanka.
Vanlauwe, B. and Giller, K. E. (2006). Popular myths around soil fertility management in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 116, 34-46.
Vanlauwe, B., Aihou, K., Aman, S., Iwuafor, E. N. O., Tossah, B. K., Diels, J., Sanginga, N., Lyasse, O., Merckx, R. and Deckers J. (2001). Maize yield as affected by organic inputs and urea in the West African moist savanna. Agronomy Journal, 93, 1191-1199.
Wielbo, J. (2012). Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Central European Journal of Biology, 7(3): 363-372.
Wilson, G., Ulzen J., Abaidoo, R. C., Opoku, A., Adjei-Nsiah, S.and Osei O. (2020). Optimizing Legume-Rhizobia Symbiosis to Enhance Legume Grain Yield in Smallholder Farming Systems in Northern and Upper West Regions of Ghana. Front. Agron. 3:653044.
Woomer, P., Huising, J., Giller, K., Baijukya, F., Kantengwa, S., Vanlauwe, B., et al. (2014). N2Africa Final Report of the First Phase: 2009-2013.
Woomer, P., Singleton, P. W. and Bohlool, B. B. (1988). Ecological indicators of native rhizobia in tropical soils. Applied and Environmental Microbiology, 54(5), 1112-1116.
Yakubu, H., Kwari, J. D. and Ngala, A. L. (2010). N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of Sudano Sahelian zone of northeastern Nigeria. Nigerian Journal of Basic and Applied Science, 18(2), 229-236.