Main Article Content

Chikodili G. Anaukwu
Vivian, N. Anakwenze
Chito C. Ekwealor
Chibuike G. Obi
Blessing I. Onyebuagu
Tobechukwu M.C. Ajogwu
Victoria I. Anyaoha
B. Isiaka Amarachukwu


Serratia marcescens commonly synthesize a red pigment known as prodigiosin. Prodigiosin is considered a promising pharmaceutical due to its documented properties of having antimicrobial, anticancer, and immunosuppressive effects. This investigation involved the isolation of Serratia marcescens, a bacterium capable of producing prodigiosin, from grey water samples collected in Nnamdi Azikiwe University Awka campus, Nigeria. The central composite design (CCD) of the experiment was applied to generate a set of 31 experimental combinations to study the optimal conditions for pigment production using nutrient broth supplemented with glucose as a fermentation medium. A regression model that described the relationship between the test variables for optimum prodigiosin yield was developed. The regression coefficient (R2) value of 72.48% implied adequate model fitness. The optimal conditions identified were 24 g/L glucose concentration, pH 7.2, 2.4 mL inoculum size, and 180 rpm agitation speed. A 4.25-fold increase in prodigiosin yield was recorded in optimized condition than in unoptimized condition. Antimicrobial activity against E. coli and Candida albicans shows that prodigiosin has significantly higher activity than the conventional antibiotics tested. Our results indicate that prodigiosin production by Serratia marcescens can be enhanced using statistical models, and the pigment can be an alternative to conventional antibiotics for treating microbial infections.

Article Details

How to Cite
Anaukwu, C. G., Anakwenze, V. N., Ekwealor, C. C., Obi, C. G., Onyebuagu, B. I., Ajogwu, T. M., Anyaoha, V. I., & Amarachukwu , B. I. (2024). OPTIMIZED PRODIGIOSIN PRODUCTION BY SERRATIA MARCESCENS AND ITS ANTIMICROBIAL EFFECT. The Bioscientist Journal, 12(1), 112-126. https://doi.org/10.54117/the_bioscientist.v12i1.170


Alihosseini, F., Ju, K., Lango, J., Hammock, B.D., and Sun, G. (2008). Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnology Programs, 24: 742–747. https://doi.org/10.1021/bp070481r.
Anaukwu, C.G., Onyebuagu, B.I., Obi, C.G., Anakwenze, V.N., Ekwealor, C.C., Ajogwu, T.M.C., Anyaoha, V.I., Ohuche, J.C., Osilo, C., and Isiaka, A.B. (2024). Antimicrobial effect of response surface optimized pyocyanin produced by Pseudomonas aeruginosa. Journal of Biotechnology and Bioinformatics Research, 6(3): 1 – 7. https://doi.org/10.47363/JBBR/2024(6)178
Anaukwu, C.G., Ogbukagu, C.M., and Ekwealor, I. A. (2020). Optimized biosurfactant production by Pseudomonas aeruginosa strain CGA1 using agro-industrial waste as sole carbon source. Advances in Microbiology, 10: 543-562. https://doi.org/10.4236/aim.2020.1010040
Anwar, M.M., Albanese, C., Hamdy, N.M., and Sultan, A.S. (2022). Rise of the natural red pigment ‘prodigiosin’ as an immunomodulator in cancer. Cancer Cell International, 22:419. https://doi.org/10.1186/s12935-022-02815-4
Araújo, R.G., Zavala, N.R., Castillo-Zacarías, C., Barocio, M.E., Hidalgo-Vázquez, E., Parra-Arroyo, L., Rodríguez-Hernández, J.A., Martínez-Prado, M.A., Sosa-Hernández, J.E., and Martínez-Ruiz, M. (2022). Recent advances in prodigiosin as a bioactive compound in nanocomposite applications. Molecules, 27(15):4982. https://doi.org/10.3390/molecules27154982
Araujo, H.W.S., Fukushima, K., and Takkaki, G.M.C. (2010). Prodigiosin production by Serratia marcescens UCP 1549 using renewable resources as a low-cost substrate. Molecules, 15(10): 6931 – 6940. https://doi.org/10.3390/molecules15106931
Arivizhivendhan, K.V., Boopathy, R., and Maharaja, P. (2015). Bioactive prodigiosin-impregnated cellulose matrix for the removal of pathogenic bacteria from aqueous solution. The Royal Society of Chemistry Advances, 5(84):68621–68631.
Arivizhivendhan, K.V., Mahesh, M., and Murali, R. (2019). Prodigiosin-iron-oxide-carbon matrix for efficient antibiotic-resistant bacterial disinfection of contaminated water. ACS Sustainable Chemistry and Engineering, 7(3):3164–3175.
Arivuselvam, R., Dera, A.A., Parween, A. S., Alraey, Y., Saif, A., Hani, U., Arumugam, R. S., Azeeze, M.S.T., Rajeshkumar, R., Susil, A., Harindranath, H., and Kumar, B.R.P. (2023). Isolation, identification, and antibacterial properties of prodigiosin, a bioactive product produced by a new Serratia marcescens JSSCPM1 strain: exploring the biosynthetic gene clusters of Serratia species for biological applications. Antibiotics (Basel), 12(9):1466. doi: 10.3390/antibiotics12091466.
Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries. Second Edition. Cambridge University Press, Cambridge, United Kingdom, 113–200.
Choi, S.Y., Lim, S., Yoon, K.H., Lee, J.I., and Mitchell, R.J. (2021). Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. Journal of Biological Engineering, 15(1):10. https://doi.org/10.1186/s13036-021-00262-9.
Danevčič, T., Vezjak, B. M., Zorec, M., and Stopar, D. (2016). Prodigiosin-A multifaceted Escherichia coli antimicrobial agent. PLoS One. 11(9): e0162412. https://doi.org/10.1371/journal.pone.0162412.
Darshan, N., and Manonmani, H.K. (2016). Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express, 6:50. https://doi.org/10.1186/s13568-016-0222-z.
Darshan, N., and Manonmani, H.K. (2015). Prodigiosin and its potential applications. Journal of Food Science and Technology, 52(9):5393–5407. https://doi.org/10.1007/s13197-015-1740-4
Ennouri, K., Ayed, R.B., Mazzarello, M., Ottaviani, E., Hertelli, F., and Azzouz, H. (2016). Classical and Bayesian predictions applied to Bacillus toxin production. 3 Biotech, 6: 206. https://doi.10.1007/s13205-016-0527-2
Gohil, N., Bhattacharjee, G., Kalariya, R., Pandya, V., Khambhati, K., Gohil, J., Alzahrani, K.J., Show, P., Maurya, R., and Singh, V. (2021). Biovalorization of agro-industrial waste soybean meal for the production of prodigiosin by Serratia marcescens. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02102-8
Gul, S., Shad, M.A., Arshad, R., Nawaz, H., Ali, A., Altaf, A., Gul, T., and Iqbal, W. (2020). Response surface optimization of prodigiosin production by mutagen-treated Serratia marcescens in different growth media. Pharmacognosy Magazine,16,68,99-107. https://doi.org/10.4103/pm.pm_430_19
Han, R., Xiang, R., Li, J., Wang, F., and Wang, C. (2021). High-level production of microbial prodigiosin: A review. Journal of Basic Microbiology, 61(6): 506 – 523. https://doi.org/10.1002/jobm.202100101
Herráez, R., Mur, A., Merlos, A., Viñas, M., and Vinuesa, T. (2019). Using prodigiosin against some Gram-positive and Gram-negative bacteria and Trypanosoma cruzi. Journal of Venomous Animals and Toxins Including Tropical Diseases, 25: e20190001. https://doi.org/10.1590/1678-9199-jvatitd-2019-0001.
Islan, G.A., Rodenak-Kladniew, B., Noacco, N., Duran, N., and Castro, G.R. (2022). Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered, 13(6):14227-14258. https://doi.org/10.1080/21655979.2022.2084498.
Kamble, K.D., and Hiwarale, V.D. (2012). Prodigiosin production from Serratia marcescens strains obtained from farm soil. International Journal of Environmental Sciences, 3: 631–638.
Kimyon, Ö., Das, T., Ibugo, A.I., Kutty, S.K., Ho, K.K., Tebben, J., Kumar, N., and Manefield, M. (2016). Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Frontiers in Microbiology, 7: 972. https://doi.org/10.3389/fmicb.2016.00972
Lapenda, J.C., Silva, P.A., Vicalvi, M.C., Sena, K.X., and Nascimento, S.C. (2015). Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World Journal of Microbiology and Biotechnology, 31(2): 399-406. https://doi.org/10.1007/s11274-014-1793-y.
Lapenda, J.C.L., Alves, V.P., Adam, M.L., Rodrigues, M.D., and Nascimento, S.C. (2020). Cytotoxic effect of prodigiosin, natural red pigment, isolated from Serratia marcescens UFPEDA 398. Indian Journal of Microbiology, 60: 182–195. https://doi.org/10.1007/s12088-020-00859-6.
Lin, C., Jia, X., Fang, Y., Chen, L., Zhang, H., Lin, R., and Chen, J. (2019). Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron Journal of Biotechnology, 40:58 – 64. https://doi.org/10.1016/j.ejbt.2019.04.007.
Ma, Z., Xiao, H., Li, H., Lu, X., Yan, J., Nie, H., and Yin, Q. (2024). Prodigiosin as an antibiofilm agent against the bacterial biofilm-associated infection of Pseudomonas aeruginosa. Pathogens, 13(2):145. https://doi.org/10.3390/pathogens13020145
Manas, N.H.A., Chong, L.Y., Tesfamariam, Y.M., Zulkharnain, A., Mahmud, H., Mahmod, D.S.A., Fuzi, S.F.Z.M., and Azelee, N.I.W. (2020). Effects of oil substrate supplementation on production of prodigiosin by Serratia nematodiphila for dye-sensitized solar cell. Journal of Biotechnology, 317:16–26. https://doi.org/10.1016/j.jbiotec.2020.04.011.
Merlino, C.P. (1924). Bartolomeo Bizio’s letter to the Most Eminent Priest, Angelo Bellani, concerning the phenomenon of the red-colored polenta. Journal of Bacteriology, 9:527–543. https://doi.org/10.1128/jb.9.6.527-543.1924.
National Center for Biotechnology Information (2024). PubChem compound summary for CID 135455579, prodigiosine. Retrieved April 2, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/Prodigiosine.
Nayebi, H. (2020). Multiple regression analysis. In: Advanced Statistics for Testing Assumed Causal Relationships. University of Tehran Science and Humanities Series. Springer, Cham. https://doi.org/10.1007/978-3-030-54754-7_1
Pore, T.S., Khanolkar, A.B., and Nadaf, N.H. (2016). Production, purification, identification of prodigiosin from Serratia sp. and its antimicrobial activity. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 1: 326.
Rahul, S., Chandrashekhar, P., Sunil, K., John, H., and Satish, P. (2016). Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Natural Product Research, 31(5): 1 – 6. https://doi.org/10.1080/14786419.2016.1195380
Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406 – 425.
Samrot, A.V., Chandana, K., Senthilkumar, P., and Narendra, K.G. (2011). Optimization of prodigiosin production by Serratia marcescens SU-10 and evaluation of its bioactivity. International Research Journal of Biotechnology, 2(5): 128 - 133
Shahitha, S. and Poorina, K. (2012). Enhanced production of prodigiosin produced in Serratia marcescens. Journal of Applied Pharmaceutical Science, 2(8): 138 – 140. https://doi.org/10.7324/JAPS.2012.2823
Su, W., Tsou, T., and Liu, H. (2011). Response surface optimization of microbial prodigiosin production from Serratia marcescens. Journal of the Taiwan Institute of Chemical Engineers, 42(2): 217 – 222. https://doi.org/c10.1016/j.jtice.2010.05.009
Sundaramoorthy, N., Yogesh, P., and Dhandapani, R. (2009). Production of prodigiosin from Serratia marcescens isolated from soil. Indian Journal of Science and Technology, 2(10): 32-34
Suryawanshi, R.K., Patil, C.D., Koli, S.H., Hallsworth, J.E., and Patil, S.V. (2017). Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Natural Product Research, 31(5):572–577. https://doi.org/10.1080/14786419.2016.1195380
Tamura, K., Nei, M., and Kumar, S. (2004). Prospects for inferring very phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101: 11030 - 11035
Tao, J., Wang, X., Shen, Y., and Wei, D. (2005). Strategy for the improvement of prodigiosin production by a Serratia marcescens mutant through fed-batch fermentation. World Journal of Microbiology and Biotechnology, 21:969 – 972. https://doi.org/10.1007/s11274-004-7257-z.
Vijay, D., Baby, B., Alhayer, M.S., Vijayan, R., and Akhtar, M.K. (2022). Native production of prodigiosin in the estuarine bacterium, Vibrio gazogenes PB1 and identification of the associated pig genes. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.940888
Vitale, G.A., Sciarretta, M., Palma-Esposito, F., January, G.G., Giaccio, M., Bunk, B., Spröer, C., Bajerski, F., Power, D., and Festa, C. (2020). Genomics–metabolomics profiling disclosed marine Vibrio spartinae 3.6 as a producer of a new branched side chain prodigiosin. Journal of Natural Products, 83:1495–1504. https://doi.org/10.1021/acs.jnatprod.9b01159
Voidarou, C., Antoniadou, m., Rozos, G., Tzora, A., Skoufos, I., Varzakas, T., Lagiou, A., and Bezirtzoglou, E. (2021). Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods, 10(1): 69. https://doi.org/10.3390/foods10010069
Wang, X., Cui, Z., Zhang, Z., Zhao, J., Liu, X., Meng, G., Zhang, J., and Zhang, J. (2024). Two-step optimization for improving prodigiosin production using a fermentation medium for Serratia marcescens and an extraction process. Fermentation, 10(2): 85. https://doi.org/10.3390/fermentation10020085
Yip, C.H., Mahalingam, S., Wan, K.L., and Nathan, S. (2021). Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition. PLoS One, 16(6):e0253445. https://doi.org/10.1371/journal.pone.0253445.
Zara, S. (2016). Biosynthesis of prodigiosin and its application. Journal of Biological Sciences (IOSR-JPBS), 11(6):01-28.